برنامه نویسی پایتون (طول دوره 32 ساعت)

برنامه نویسی پایتون (طول دوره 32 ساعت)

-
تهیه بلیت برای این رویداد از روز دوشنبه ۲ اسفند ساعت ۰۰:۰۰ تا روز پنج‌شنبه ۱۷ فروردین ساعت ۲۳:۵۰ امکان‌پذیر است.

سر فصل مطالب

 

Intro to Python Programming (Level 01)



  Introduction to python
           Introduction to Open-Source Language        
         Python Core and Versions
                  o   Pycharm, Anaconda
                  o   Jupyter, Qt console, Notebook, Ipython, Anaconda Navigator
           Reserved Words and Naming Conventions

Python Structure

         Arithmetic operations
         Python Collections (Lists, Tuples, Sets and Dictionaries)
         Import Clause
         Copying Collections (Deep and Shallow Copy)
         Intro to Classes, Functions
         Read and write Output/Input
                  o   Formatting Output/Input and Dialog Boxes
                  o   Access and Permission
                  o   Handling I/O Exceptions
         Typecasting and Parsing

Functions and Classes

         Built-in Modules (Sys, Math, Time, Pickle, …)
         Access Modifiers (Public- Private -Protected)
         User-Defined Classes
                  o   Constructors, Copy Constructor, Object Instantiation
         User-defined Methods
                  o   Set and Get methods
                  o   Finalizers
                  o   Overloading versus Overriding Methods

Regular Expressions

         Simple Character Matches
         Special Characters
         Greedy Matches
         Grouping
         Substituting
         Splitting a given String
         Compiling Regular Expressions

Object Oriented concepts:

         Four fundamental Object-oriented programming (OOP) concepts
                  o   Inheritance, Polymorphism, Abstraction and Encapsulation
         Interfaces ( Abstract base ) and Packages
         Serialization and Deserialization (Pickle…)
         Database Connectivity
                  o   Oracle, SQL server, and MongoDB



Intro to Python Programming (Level 02)

 
Data Integration

         Plain Text (Standard and UTF-8)
         Excel /CSV Format
         Multimedia Files and Services (Read / Write)
         Web Crawler (urllib, request, soup, scrapy…)
         Data Serialization (Pickle, Dill, JSON, YAML…)
         PyDI: Python Data Integration package
         Introduction to Pentaho: Data Integration, Business Analytics and Big Data
         Database (SQL/NoSQL connections)

 
Essential Data Science Libraries

         NumPy - Numeric Computation
         Pandas - Data structures and Exploratory Analysis.
         Matplotlib - Plotting and Visualization Tool
         IPython - Interactive shell to Explore Data and Debug Errors.
         SciPy - Extends NumPy with more Mathematical Functionality

 
Image Processing (Essential Framework)

         Introduction to general concepts in image processing
         Scipy - Basic Image Manipulation and Processing
         PIL - Basics Creating an image. Save Image. Load Image. Show image
         OpenCV - Designed to solve Computer Vision problem
         Scikit-Image - Collection of Algorithms for Image Processing

Machine Learning (Essential Framework)

         Scikit-learn Package (Installation and Implementation)
                  o   Learning models in sklearn
                  o   k-means Clustering, Decision Trees, Linear Regression,
                  o   K-Nearest-Neighbors, Predictive Models, Logistic Regression,
                  o   Support Vector Machines,
                  o   Dimensionality Reduction
                  o   K-Fold Cross-Validation and Confusion matrices

           Deep Learning Package (Installation and Implementation)
                  o   GPU programming in Python (PyCUDA, PyOpenCL, …)
                  o   Theano; Python library speed and stability optimizations
                  o   TensorFlow; High-performance serving system for machine learning models
                  o   Caffe; Deep learning framework
                  o   Keras; Deep Learning library for Theano and TensorFlow
                  o   Pylearn2; Deep learning research library

Web and Text Mining

         Review on Web Crawler Library
         Introduction to Natural language processing (NLP)
         NLTK Exploration; The Natural Language Toolkit
         HAZM “Farsi Mining”; Library for Digesting Persian Text
         Pattern; natural language processing, Text Learning
         Elasticsearch; Full Text Search into Python

Bigdata Framework

         Introduction to big data frameworks
         Hadoop Python MapReduce

مدرس

دکتر مهدی حبیب زاده

دکتر مهدی حبیب زاده

(دکترای علوم رایانه - دانشگاه کنکوردیا - مونترال - کانادا)

روز های برگزاری

جمعه ها
عنوانشروعپایان
جمعه ها به طول 9 جلسه شروع جلسه 18 فروردین۱۷:۱۵۲۰:۳۰

گروه علمی داج

شماره دبیرخانه:
۰۲۱۴۴۰۹۹۴۰۰

زمان: -

آدرس: تهران بلوار اشرفي اصفهاني شمال به جنوب - جنب مسجد جامع (امام سجاد) خیابان اسکندر زاده نبش گلستان ۸ پلاک ۸ واحد ۱۰

موقعیت جغرافیایی رویداد برای مشاهده کامل نقشه کلیک کنید